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Mechanically Flexible Interconnects With
Contact Tip for Rematable Heterogeneous
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Abstract— A wafer-level, batch-fabricated, mechanically flex-
ible interconnect (MFI) with a contact tip has been developed
for rematable heterogeneous system integration. The contact tip,
which exhibits a truncated-cone profile, enhances the scrubbing
capability while maintaining the tip lifetime by avoiding tip
plastic deformation. Electrical and mechanical characterization
has been conducted on various testbeds to verify the performance
of the assembled chip links with MFIs. The results indicate that a
single MFI has an average electrical resistance of 103.21 m� and
up to 1 A current carrying capability, and can be successfully
assembled on nonplanar surfaces with up to 45-μm surface
variation.

Index Terms— Advanced packaging, flexible interconnect,
heterogeneous integration, NiW, rematable assembly.

I. INTRODUCTION

HETEROGENEOUS chip integration has been investi-
gated for many decades and has emerged as a promising

approach to realize large-scale, high-performance computing
systems [1]–[8]. However, as the number and diversity of
integrated chips increase, the cost and yield of a heterogeneous
system suffer from the increased complexity of system-level
testability. In addition, since chips are typically permanently
soldered, there is a lack of repairability, which can increase
system cost. Moreover, yields on reworkability could be sub-
stantially improved over current industry standard practices.

We propose a novel integration platform in which solder
joints are replaced with flexible interconnects to alleviate
system-level testability and repairability, as shown in Fig. 1.
To realize this rematable heterogeneous integration platform,
the flexible interconnects need to exhibit the following charac-
teristics: 1) relatively large bending force for reliable contact;
2) large vertical range of motion to overcome substrate
warpage and topological variation; 3) low electrical con-
tact resistance; 4) long lifetime; and 5) low-cost wafer-
level batch fabrication process. However, due to limitations
stemming from material property, design, and/or fabrication
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Fig. 1. (a) Traditional 2.5-D heterogeneous system. (b) Rematable 2.5-D
system enabled using MFIs.

processes, it is challenging for traditional flexible intercon-
nect technologies [9]–[21] to meet the requirements above.
We previously reported Au–NiW-based mechanically flexible
interconnects (MFIs) [22]–[26] as a promising rematable inter-
connect technology for various applications [27]–[32]. In this
paper, the Au–NiW-based MFIs have been advanced by adding
a contact tip. The tip structures on previously reported flexible
interconnects were designed to be suitable for permanent
solder attachment [12], [18], [21]. In this paper, the contact
tip is designed with a truncated-cone shape for enhanced
rematable interconnection. Various testbeds consisting of chips
with MFIs and corresponding substrates were assembled to
demonstrate the electrical and mechanical performance of
the MFIs.

The fabrication and experimental design of the MFI technol-
ogy under consideration is discussed in Section II. Rematable
chip assembly using MFIs is demonstrated and characterized
in Section III. In Section IV, robust assembly of a silicon
chip on a nonplanar surface using MFIs is reported. Finally,
Section V presents the conclusion.

II. EXPERIMENTAL DESIGN AND FABRICATION PROCESS

In this section, the fabrication of Au–NiW MFIs with a
truncated-cone tip is discussed first. Next, the testbed design,
fabrication, and results are described.
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Fig. 2. Fabrication process of MFIs with a truncated-cone tip.

A. Fabrication of MFIs With Truncated-Cone Tip

Based on our previously reported Au–NiW MFIs [22]–[26],
the fabrication process of Au–NiW MFIs with a contact tip is
developed and is shown in Fig. 2. The fabrication process of
the MFIs begins with the formation of a sacrificial polymer
dome accomplished by patterning and thermally reflowing
a spin-coated polymer layer on a nitride-passivated silicon
wafer. Next, a Ti/Cu/Ti film was sputtered on top of the
65-μm-tall polymer domes as an electroplating seed layer.
Following seed layer formation, a 12-μm-thick conformal
photoresist layer was spray-coated and patterned on top
of the seed layer as an electroplating mold [26]. After
electroplating of the MFIs, the photoresist plating mold
was removed, followed by patterning of another spin-coated
photoresist for tip electroplating. Following tip formation, the
tip electroplating mold, the seed layer, and the polymer domes
were stripped, leaving behind MFIs with a truncated-cone tip
and a 65-μm-high vertical gap above the substrate. Finally,
the free-standing NiW MFIs on the test chip are passivated
by a 0.3-μm-thick electroless plated gold finish.

An array of Au–NiW MFIs with a truncated-cone tip
is shown in Fig. 3. As reported in [26], compared to the
sputtering method, electroless gold plating does not require
extra lithography steps and covers the entire surface area of
the free-standing MFIs. The very thin (approximately 0.3 μm)
Au passivation layer lowers the resistance and enhances the
lifetime of the NiW MFIs while maintaining the desired
mechanical properties [24]. In addition, during the assembly
process, the Au–NiW MFIs form a low-contact resistance, in
particular, to gold passivated bond pads.

SEM images of Au-NiW MFIs with a truncated-cone tip are
shown in Fig. 4(a) and (b). The inline pitch of the fabricated
MFIs is 150 μm, and they exhibit a standoff height of 65 μm.
Accounting for the 10-μm-thick MFI and 30-μm-tall tip, the
aggregate height of the fabricated MFI (anchor to tip) is
approximately 105 μm, which is large enough to overcome

Fig. 3. MFIs with a truncated-cone tip after being passivated with a
electroless gold layer.

Fig. 4. (a) Array of free-standing Au-NiW MFIs with contact tip. (b) Au-
NiW MFIs exhibit a 65-μm elastic vertical range of motion and a 30-μm-tall
contact tip.

surface variation and warpage of organic substrates [33],
as shown in Fig. 5. The contact tip was designed and fabricated
as a truncated-cone shape for the following reasons: 1) the base
of the tip is enlarged for better tip-to-lead adhesion and lower
resistance; and 2) the contact tip can enhance the scrubbing
to the bonding pads. The truncated-cone profile was formed
by an electroplating process using a photoresist mold with a
negative sidewall profile.

The pitch of the MFIs under consideration is compatible
with the needs of advanced FCBGA (minimum pitch is
approximately 150 μm). For higher density interconnects,
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Fig. 5. (a) MFI enabled chip/interposer assembly on nonuniform substrates
to demonstrate robust assembly and the ability of (b) the MFIs to compensate
for nonplanar surfaces.

Fig. 6. Two investigated assembly experiments. (a) Assembly of a chip
with MFIs onto a substrate with uniform-height pads multiple times for
rematable assembly demonstration. (b) Assembly of a chip with MFIs onto a
substrate with nonuniform-height pads to demonstrate the ability of the MFIs
to compensate for nonplanar surfaces.

such as those used in the first-level interconnection, MFI pitch
can be scaled, as demonstrated in [25]; MFIs with an inline
pitch of 50 μm and 65 μm vertical gap were previously
reported [26].

B. Experimental Design

Two types of assembly experiments were conducted to char-
acterize the electrical and mechanical properties of the MFIs:
1) assembly of a chip with MFIs onto a substrate with uniform-
height pads multiple times to demonstrate rematable assembly
[Fig. 6(a)], and 2) assembly of a chip with MFIs onto a
substrate with nonuniform-height pads to demonstrate robust
assembly and the ability of the MFIs to compensate for
nonplanar surfaces [Fig. 6(b)].

In both experiments, the chips were assembled using
a Finetech submicrometer-resolution flip-chip bonder. Once
aligned and mounted onto the substrate, the chips were affixed
by applying epoxy to the corners of the chips. The applied
force during the bonding process was calculated based on the

Fig. 7. (a) Optical image and (b) X-ray image of an assembled testbed.

Fig. 8. Fabrication process of the test substrate with uniform-height pads
(steps A–E) and the test substrate with nonuniform-height pads (steps F–I).

compliance, deformation depth, and number of MFIs on each
chip. For the reported assembly, each chip contains 304 MFIs.
Assuming each MFI has a compliance of 5 mm/N and will
experience a deformation of 30 μm during assembly, the
applied force during chip assembly is 1.82 N.

A sample assembled testbed is shown in Fig. 7(a). Following
the assembly, an X-ray imaging tool, Dage X-Ray XD7600NT,
was used to verify assembly alignment accuracy. The X-ray
image shown in Fig. 7(b) illustrates not only the alignment
accuracy but also the lack of any voids in the fabricated
(electroplated) electrical links. In Fig. 7(b), the 3-μm-thick
traces on the substrate are represented in the X-ray image by
the light gray traces; the dark dots on top of the MFIs in the
X-ray image are the truncated-cone tips.

C. Fabrication of the Test Substrate

Fig. 8 shows the fabrication processes of the two test sub-
strates used in this paper. The fabrication of the substrate with
uniform-height pads is shown in steps I–V: One lithography
step was used to pattern the electroplating mold above a
sputtered Ti/Cu/Ti seed layer; pads and traces were formed by
Cu electroplating; next, a 300-nm-thick Au layer was sputtered
as a passivation layer. Following the Au layer lift-off and
seed layer removal, the substrate with uniform-height pads was
obtained for the first set of assembly experiments [Fig. 6(a)].
For the assembly on nonuniform-height pads [Fig. 6(b)],
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Fig. 9. Test substrate with nonuniform-height pads.

Fig. 10. (a) Surface profile of the test substrate with nonuniform pads.
SEM images of the surface of (b) high-profile pad and (c) low-profile pad.

in addition to steps A–E, a second plating process was used
to form the nonuniform-height pads (steps F–I).

Fig. 9 shows the test substrate with various-height pads. A
surface topography scan using the Dektak 150 profilometer
was performed to characterize the height of the pads across
the substrate. As shown in Fig. 10(a), the low-profile pads are
3 μm tall and the high-profile pads are 48 μm tall, which leads
to a 45-μm height difference. The surface roughness of the
high-profile pads (approximately 5 μm) is much larger than
that of the low-profile pads (approximately 1 μm) and was
verified by SEM [SEM images of the surface of the high- and
low-profile pads are shown in Fig. 10(b) and (c), respectively].
The rougher surface of the high-profile pads is believed to be

Fig. 11. Testbed with four-point resistance measurement structures, including
(a) chip with MFIs and (b) corresponding substrate, is used for rematability
verification.

caused by the higher deposition rate and the longer deposition
time used in the second electroplating step. The impact of the
surface roughness on the contact resistance will be discussed
in Section IV.

III. MFIs-ASSISTED REMATABLE ASSEMBLY

In this section, the assembly experiment shown in Fig. 6(a)
is used to demonstrate the rematable assembly of chips with
truncated cone tip Au–NiW MFIs.

A. Rematability Verification

Four-point electrical measurements of the MFIs were per-
formed using the testbed shown in Fig. 11. The rematability
of the MFIs is demonstrated by comparing the four-point
resistance measurement results of a testbed in which a chip
was assembled once to that of a testbed in which a chip was
mounted and remounted for a total of ten times.

Four-point resistance measurements were conducted using
a Signatone Probe Station. A detailed schematic of the four-
point resistance measurement setup is shown in Fig. 12(a).
X-ray imaging, as shown in Fig. 12(b), was used to ensure
the testing structure was aligned correctly. The measured
resistance includes that of the MFI plus the contact resistance
to the pad. The average resistance of 12 assembled samples
is 103.21 m�, and the standard derivation is 4.06 m�.

To demonstrate the rematability, the testbed shown
in Fig. 11 was repeatedly assembled for ten times and
then measured using the four-point resistance setup described
previously. The measured average resistance is 105.99 m�.
As summarized in Table I, compared to the results from
the testbed in which the chip was only mounted once, the
difference in the resistance is negligible (less than 3 m�).
SEM images were taken, as shown in Fig. 13, to verify that
after repeated assembly, the Au–NiW MFIs maintain their
original profile.

B. Yield and Current Carrying Capability Characterization

The yield and current carrying capability of the MFIs were
performed on the testbed shown in Fig. 14. The chip and
substrate were designed to form a daisy chain of serially
interconnected MFIs.
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Fig. 12. (a) Schematic and (b) X-ray image of assembled four-point resistance
measurement structures.

TABLE I

RESISTANCE CHARACTERIZATION FOR REMATABLE ASSEMBLY

TABLE II

RESISTANCE OF VARIOUS DAISY CHAIN DESIGNS

Fig. 15 shows three different daisy-chain lengths on the
assembled test vehicle: daisy chains C1–C3 contained a total
of 24 MFIs, 18 MFIs, and 12 MFIs, respectively. The measured
resistance of daisy chains C1–C3 is 2.897, 2.115, and 1.378 �,
respectively, as summarized in Table II.

Daisy chain C1 was used for current carrying capability
measurement as well. The test setup is shown in Fig. 16. The

Fig. 13. (a) SEM images of Au–NiW MFIs, including (b) magnified image
of the tip and (c) traces, which were repeatedly assembled on for ten times.

Fig. 14. Testbed with daisy chain measurement structures, which includes
(a) chip with MFIs and (b) corresponding substrate, is used for yield and
current carrying capability characterization.

assembled testbed was attached on an FR-4 test board with an
opening at the center. An Agilent N6705B power analyzer
was used as a power supply as well as for recording the
input current and the output voltage of the testbed. Since a
significant amount of heat is generated during the current car-
rying capability test, an air-cooled heat sink, RCK-ZAIO-92,
designed for an Intel i7 processor was attached on top of
the test vehicle through a TIM layer to avoid overheating.
In addition, a thermal coupler was attached on the back side
of the testbed through the opening of the test board to monitor
the real-time temperature of the testbed.

For each test, the input current is increased from 10 mA
to 1 A. After the first current ramp was accomplished, the
testbed was cooled down for 20 min. Once the sample reached
room temperature, approximately, a second current ramp was
performed for comparison. The voltage and the corresponding
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Fig. 15. Three daisy chain designs consisting of different number of
MFIs—daisy chains C1–C3 contained 24, 18, and 12 MFIs, respectively.

Fig. 16. Test setup used for current carrying capability test.

Fig. 17. Current–voltage and current–temperature curves of current carrying
capability test performed on a testbed with daisy chain design.

temperature accompanied with the two current runs were
recorded, as shown in Fig. 17.

At the beginning of each test, the voltage was linear with
respect to the input current. The slope of the I–V curve is
2.89 �, which is the resistance of the daisy chain C1 at
room temperature. This linear relationship remained until the
current reached approximately 0.4 A, which coincides with

Fig. 18. X-ray images of the assembled chip with MFIs on a substrate
with nonuniform-height pads: (a) overview and (b) four-point resistance
measurement configuration.

the temperature of the assembled test vehicle reaching 30 °C.
As the input current and power increases further, the volt-
age becomes nonlinear to input current, which indicates an
increased daisy chain resistance. Such a resistance change is
believed to be caused by the increased temperature, which
is shown in Fig. 17 as well. The I–V curves of the two
experiments are overlapped, which indicates that the MFIs can
sustain an input current of 1 A.

IV. MFIs-ASSISTED ASSEMBLY ON

NONPLANAR SUBSTRATE

In this section, temporary assembly on the nonplanar sub-
strate is demonstrated using the testbed shown in Fig. 6(b).
As noted previously, the pad-to-pad height difference on the
substrate was 45 μm.

As shown in Fig. 18, the X-ray images following assembly
indicate that the chip is well aligned with the substrate. The
black dot on top of the MFIs is the truncated-cone tip, and
the dark rectangular areas above the center-located MFIs are
the high-profile pads, which are 48 μm tall as described
previously.

Four-point resistance measurements of the assembled MFIs
making contact to the high-profile pads are summarized
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Fig. 19. Four-point resistance measurements of MFIs assembled on various
test substrates.

in Fig. 19. The average resistance of the assembled MFI/
high-profile pad combination is 122.81 m� with a standard
deviation of 4.16 m�. The measured average resistance is
9.6 m� larger than the average resistance of the assembled
MFI/low-profile pad combination reported in Section III and
summarized in Table I. This increase in resistance can be
attributed to both the thicker pad and the increased surface
roughness described previously, which can increase the contact
resistance.

V. CONCLUSION

Au–NiW MFIs with truncated cone tip were wafer-level
batch fabricated and used to demonstrate rematable assembly
on various substrates. Four-point resistance measurements
were reported as well. The truncated cone tip enhances bond-
ing pad scrubbing. In addition, daisy chain and current carry-
ing capability measurements indicate that the Au–NiW MFIs
form reliable interconnects and exhibit a large current carrying
capability of 1 A. Finally, due to the large vertical range of
motion, Au–NiW MFIs enable the assembly of a silicon chip
onto a substrate with up to 45 μm surface variation.
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